About this episode
CardioNerds CardioOncology Series Co-Chairs, Dr. Teodora Donisan and Dr. Dinu Balanescu, and FIT Lead Dr. Bala Pushparaji discuss Interventional CardioOncology with Prof. Cezar Iliescu. In this episode, we discuss the spectrum of cardiovascular diseases encountered by the interventional onco-cardiologist, with a focus on nuances in endovascular therapies tailored to cancer patients and their unique comorbidities and complications. We also discuss certain special scenarios seen in the critically ill cancer patient, such as chronic thrombocytopenia, and how they alter standard of care compared to non-cancer patients. Show notes were drafted by Dr. Bala Pushparaji and episode audio editing was performed by Dr. Akiva Rosenzveig. This episode is supported by a grant from Pfizer Inc. This CardioNerds Cardio-Oncology series is a multi-institutional collaboration made possible by contributions of stellar fellow leads and expert faculty from several programs, led by series co-chairs, Dr. Giselle Suero Abreu, Dr. Dinu Balanescu, and Dr. Teodora Donisan. CardioNerds Cardio-Oncology PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Pearls and Quotes - Interventional CardioOncology Cancer should be treated as a chronic illness akin to hypertension or diabetes and should not deprive patients from receiving appropriate cardiovascular treatment if otherwise indicated (e.g., PCI for acute coronary syndromes, etc.). In cancer patients with stable angina, along with maximizing medical therapy, multimodality imaging (CTA/PET), intravascular imaging (IVUS/OCT), and physiologic testing (iFR/FFR) should be used routinely to prevent unnecessary stenting. Caution is required in the cath lab for the cancer patient with thrombocytopenia. Techniques include utilizing micropuncture access, transfusing appropriate blood products based on thromboelastogram (TEG), and adjusting antiplatelet therapy regimens and duration. Transcatheter aortic valve replacement (TAVR) is now the recommended treatment for most cancer patients with symptomatic/severe aortic stenosis and, if otherwise indicated, should preferably be pursued prior to cancer treatment to optimize the patient’s cardiovascular fitness and tolerance of anti-cancer therapy. Pericardiocentesis in the cancer patient should be performed preferably under fluoroscopy with echocardiography and vascular ultrasound guidance (“triple guidance”). Show notes - Interventional CardioOncology What is the general approach to cardiovascular illness in the cancer patient? Cancer and cardiovascular diseases share numerous risk factors. In addition, cancer and cancer therapies can be atherogenic, by means of inducing pro-inflammatory and hyprecoagulable states, increasing the risk of ischemic heart disease, stroke, and peripheral arterial disease.1 In the outpatient setting, emphasis should be placed on optimizing cardiovascular risk factors and improving overall cardiovascular fitness by exercising, having a healthy diet, and having regular sleep hours as these favor survivorship after cancer treatment. Questions to be answered in the clinic are - Is the patient cardiovascularly fit? Will the patient’s heart withstand cancer treatment? Is there concern for coronary artery disease, valvular disease, pericardial disease, or pulmonary hypertension? Risk assessment and treatment for cancer patients with suspected or known cardiovascular disease should generally follow established ACC/AHA guidelines, with special considerations as outlined by the Society of Cardiovacular Angiography and Interventions (SCAI).2 Pre-chemotherapy cardioprotection for patients without coronary artery disease (CAD) with prophylactic beta-blockers, ACEi/ARB, and statins should be considered when appropriate. For high-risk patients with CAD, blood pressure control, frequent screening via echocardiography, and measurement of serum cardiac biomarkers is encouraged. What is the approach to stable angina in cancer patients? Start the evaluation by identifying cardiovascular risk factors and cardiovascular co-morbidities such as hypertension and diabetes. Review prior or active cancer treatments that might increase the risk for CAD (e.g., chest radiotherapy). Utilize prior imaging that the patient may have had for cancer staging, to look for coronary artery calcification. Depending on the patient’s risk profile for ischemic heart disease, stress testing/multi-modality imaging techniques ranging from coronary CTA to cardiac PET can be pursued to delineate coronary anatomy and identify the myocardium at risk. The final step is invasive coronary imaging – with the intent of fixing main vessel, proximal, and ostial lesions. A wait and watch approach with optimized medical management is preferred for stable lesions in small branches subtending smaller portions of the myocardium. Intravascular imaging (optical coherence tomography - OCT, intravascular ultrasound - IVUS) and physiologic techniques (iFR and FFR) add value to guide decision-making about revascularization. Maximally optimize medical therapy before resorting to an invasive strategy. Sometimes, in anticipation of progressing CAD following cancer treatment/cancer evolution, it may be pertinent to have an aggressive approach during the initial presentation of the patient in the clinic. Patients with advanced cancer may have anemia, thrombocytopenia, or pancytopenia which could make downstream coronary interventions more complicated. What is the approach to acute coronary syndromes (ACS) in cancer patients? Cancer patients with ACS typically present with dyspnea, followed inconsistently by chest pain thereby creating a layer of challenge in the diagnosis. A high index of suspicion is necessary in order to not miss this diagnosis. A subset of patients with ACS-type presentation could have stress induced cardiomyopathy or chemotherapy induced vasospasm/endothelial dysfunction (5-fluorouracil is the most common cause). After risk assessment, invasive approach with left heart catheterization/coronary angiogram with or without intervention can be the next best step in selected patients. Choosing the appropriate stent (bare metal stent, BMS, vs. drug eluting stent, DES) and antiplatelet regimen is key, especially in the setting of chronic thrombocytopenia.3 Although BMS were once commonly used in cancer patients due to their brief antiplatelet drug requirement, they are associated with increased risks for in-stent restenosis and are not preferred in the current era. Modern DES have safer profiles and evidence shows that abbreviated dual antiplatelet thearpy (DAPT) regimens can be implemented with DES as well, if needed. In cancer patients, due to various factors such as thrombocytopenia or need for cancer treatment resumption, DAPT duration may be abbreviated to 10,000/mL. DAPT with clopidogrel may be used when platelet counts 30,000–50,